
12

Ket Quantum Programming

EVANDRO CHAGAS RIBEIRO DA ROSA and RAFAEL DE SANTIAGO, Universidade Federal

de Santa Catarina, Brazil

Quantum programming languages (QPL) fill the gap between quantum mechanics and classical programming
constructions, simplifying the development of quantum applications. However, most QPL addresses the inher-
ent quantum programming problem, neglecting quantum computer implementation constraints. We present
a runtime architecture for classical-quantum execution that mitigates the limitation of interaction between
classical and quantum computers originated from the cloud-based model of quantum computation provided
by several vendors, which implies a quantum computer processing in batch. In the proposed runtime archi-
tecture, we introduce (i) runtime quantum code generation to enable generic quantum programming and
dynamic quantum execution; and (ii) the concept of futures to handle dynamic interaction between classical
and quantum computers. To support our proposal, we have implemented the Ket Quantum Programming
framework that features a Python-embedded classical-quantum programming language named Ket, the C++
quantum programming library Libket, and Ket Bitwise (quantum computing) Simulator. The last one im-
proves over the bitwise representation, making the simulation time not dependent on the number of qubits
but the amount of superposition and entanglement of simulation.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engi-

neering→ Runtime environments; General programming languages; • Computing methodologies

→ Quantum mechanic simulation;

Additional Key Words and Phrases: Quantum programming, cloud quantum computation, qubit simulation

ACM Reference format:

Evandro Chagas Ribeiro da Rosa and Rafael de Santiago. 2021. Ket Quantum Programming. J. Emerg. Technol.

Comput. Syst. 18, 1, Article 12 (October 2021), 25 pages.
https://doi.org/10.1145/3474224

1 INTRODUCTION

Motivated by the difficulty of simulating the evolution of quantum states, Feynman [12] conjec-
tures that a computer using quantum mechanics phenomena, such as superposition and entangle-
ment, could solve some problems faster than conventional supercomputers. The works of Shor
[34] and Grover [15] confirm this advantage of quantum computers over classical ones with the
proposal of quantum algorithms for, respectively, factoring an integer in polynomial time, an NP
problem, and search in an unordered database inO (

√
n), a problem with the classical lower bound

of O (n). Arute et al. [2] also experimentally demonstrated this quantum speed up.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES),

Finance Code 001.

Authors’ address: E. C. R. da Rosa and R. de Santiago, Departamento de Informática e Estatística, Universidade Federal de

Santa Catarina, Trindade, Florianópolis, SC, Brazil, 88040-900; emails: evandro.crr@posgrad.ufsc.br, r.santiago@ufsc.br.
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes only.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1550-4832/2021/10-ART12 $15.00

https://doi.org/10.1145/3474224

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

https://doi.org/10.1145/3474224
https://doi.org/10.1145/3474224

12:2 E. C. R. da Rosa and R. de Santiago

Today, we are in the Noisy Intermediate-scale Quantum (NISQ) era [33] with quantum com-
puters featuring a few dozen qubits operated by low-fidelity quantum gates that limit the input
size and time of computation. Also, NISQ computers require specific conditions to work, and even
idle time can invalidate its execution. Those are some reasons why most companies opt to provide
quantum computation via a cloud-based model [3] with batch processing, forbidding interaction
between local classical computers and quantum computers during the quantum execution.

This lack of interaction between local classical and cloud-based quantum computers prohibits
the implementation of a broad spectrum of quantum applications in high-level quantum program-
ming languages. Examples of quantum applications are quantum teleportation [4] and repeat-until-
success circuits [30], applications that use classical control flow. Although it is possible to imple-
ment those applications using quantum programming libraries [1, 36], those libraries have no way
of abstracting the classical control flow, forcing the programmer to differentiate between classical
data available on the quantum computer from the ones on the classical computer.

With the presented constraints size, time, and interaction, we address two quantum program-
ming problems in this work. First, with the strict limit of qubits and quantum gates, how does one
implement a generic quantum application with dynamic execution? Second, with quantum com-
putes processing in batch, how does one implement an interactive classical-quantum program that
runs on a local classical computer with access to a cloud-based quantum computer? As a solution,
we propose a runtime architecture that relies on (i) runtime quantum code generation and (ii) the
use of futures to handle classical information produced by a quantum computer, e.g., quantum
measurement results.

The proposed runtime architecture addresses hybrid classical-quantum programming centering
on the batch quantum execution problem of cloud-based quantum computers. As some quantum
algorithms are indeed classical-quantum, e.g., Shor’s factorization algorithms [34], there is a need
for efficient architectures to implement classical applications with quantum speedup. To imple-
ment the dynamic interaction between classical and quantum computers of the proposed runtime
architecture, we depend on the quantum computer ability to support control flow [13]. Although
today’s quantum computers has limited control flow, which limits the classical-quantum interac-
tion, we believe that complete control flow support will be available soon.

Our work focuses on NISQ and near-future quantum computers. However, we argue that our
proposal is also suitable for future fault-tolerant quantum computers [9], which has enough qubits
to run expensive quantum error correction (QEC) codes [9] on top of quantum applications. We
consider that such computers may have the same accessibility restrictions (in the cloud, not locally)
and the strict limit of qubits and quantum gates due to the high cost of QEC.

Supported by the proposed runtime architecture, we implement the Ket Quantum Programming
framework that features the C++ quantum programming library Libket, the Python-embedded
classical-quantum programming language Ket, and the Ket Bitwise Simulator (KBW) for quan-
tum executions. As Python has a large quantum programming community, we believe that it is a
good start point to introduce new concepts. That is why we choose to extend Python with the func-
tionalities of Libket, making Ket. Also, we consider that the dynamism of Python and the Libket
combined will smooth the development of new quantum algorithms and applications.

KBW implements and improves the bitwise representation [7] that uses bitwise operations to
manipulate the quantum states stored on hashmap data structures. This representation has an ad-
vantage over other models when simulating quantum states with a low amount of superposition.
In this work, we introduce a new optimization that makes the simulator require exponential exe-
cution time just when computing an entangle set of qubits in superposition. We benchmark the
KBW against other quantum computer simulators to evaluate the optimization.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:3

With the proposal runtime architecture and the Ket Quantum Programming implementation,
the main contributions of this work are:

• The design and implementation of the Ket classical-quantum programming language that
generates a well-separated classical and quantum code and has dynamic interaction between
classical and cloud-based-quantum computes, problems that are not fully addressed by the
related works;
• The use of future variables as the return of quantum measurements to delay the quantum

execution, seamless integrating those variables with the programming language constructs
in order to control the quantum execution, even without the measurement result;
• The improvement of the Bitwise representation [7] with an optimization inspired by the

simulator Qrack [38] that uses a different approach to store and manipulate the qubits and
quantum gates.

We organized the remainder of this article as follows. In Section 2, we present a brief introduc-
tion to quantum computation. We discuss the related works in quantum programming languages
in Section 3. In Section 4, we discuss the quantum programming constraints that we consider for
our proposal. In Section 5, we detail the proposed runtime architecture. In Sections 6 and 7, we
describe the Libket and Ket programming language implementations. We present the Ket Bitwise
Simulator and the benchmarks in Section 8. Finally, we present conclusions and further research
in Section 9.

2 QUANTUM COMPUTATION

In this section, we quickly introduce some basic quantum computation concepts like qubit, mea-
surement, entanglement, quantum circuit, and decoherence. For an extensive introduction, we re-
fer the reader to Reference [28]. A reader familiar with quantum computing can skip to Section 3.

A quantum bit or a qubit is the basic unit of computation of a quantum computer. Similar to a bit,
a qubit has two possible states, 0 and 1, or |0〉 and |1〉 following the Dirac notation [10]. Different
from a bit, a qubit can be at both states 0 and 1 at the same time, in what we call a superposition. It
means that the amount of information that a sequence of qubits can store is exponential with the
number of qubits. For example, a four-bit integer can represent a number between 0 and 15, but a
four-qubit integer can represent all integers from 0 up to 15 at the same time. In general terms, a
string composed of n qubits can store 2n bits of information.

There is no polynomial-time method to evaluate a quantum superposition, in other words,
to identify all the states (numbers) of a qubit sequence. So, in quantum computation, the only
viable way to collect classical information out of a quantum superposition is by performing a
measurement. A measurement will destroy the superposition and leave the qubit in a quantum
state relative to the measurement result. For example, consider a sequence of four qubits being at
in a superposition of the states |0010〉, |0100〉, and |0110〉; suppose that the measurement of those
qubits returns 0100, the following measurement results will always be 0100, because the qubit has
collapsed to |0100〉.

A qubit in a superposition is represented byα |0〉+β |1〉, whereα and β are complex numbers and
|α |2 + |β |2 = 1. The numbers α and β are probability amplitudes that weigh the random outcome
of a measurement. For example, the measurement of the qubit α |0〉 + β |1〉 has probability |α |2 of
return 0 and |β |2 of return 1. In general terms, the measurement of a n qubit sequence

∑2n−1
k=0 αk |k〉,

where
∑2n

k=0 |αk |2 = 1, has probability |αk |2 of return k .
There is no classical analog to quantum entanglement. If a set of quantum bits are entangled,

then it is not possible to completely describe a single qubit apart of the whole collection. Conse-
quently, a change in one qubit changes the state of all qubits in the entangled set. For example, if

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:4 E. C. R. da Rosa and R. de Santiago

Fig. 1. Example of quantum circuit.

we measure a single qubit of the pair of entangled qubits |β00〉 = |00〉+ |11〉√
2

, then we know the state

of the other without measuring it, because if the result is 0 or 1, then the qubits will collapse to
|00〉 or |11〉, respectively.

To take a quantum bit from a state |ψA〉 to |ψB〉, we use a quantum gate. Examples of quantum
gates are the Hadamard gate,

H |0〉 = |0〉 + |1〉√
2
,

H |1〉 = |0〉 − |1〉√
2
,

(1)

and the CNOT gate

CNOT |a b〉 = |a (a ⊕ b)〉 . (2)

Quantum gates are unitary operations. Consequently, they are time-reversible, and it is impossible
to design a quantum gate to make a copy of a qubit state [43].

A quantum circuit is a diagram that specifies a sequence of quantum gates. For example, the
circuit of Figure 1 with qubits |xy〉 has the following gate order H |x〉, CNOT |x y〉, and measures
x and y. With the same circuit, if x = 0 and y = 0, the evolution will be

Hx |00〉 = |00〉 + |10〉
√

2
, (3)

CNOT
|00〉 + |10〉
√

2
=
|00〉 + |11〉
√

2
, (4)

M
|00〉 + |11〉
√

2
=

{
50% probability of measuring 00

50% probability of measuring 11
. (5)

Decoherence is the process of loss of information that a quantum computer suffers due to its
interaction with the environment or the inaccurate execution of quantum operations. It is the pri-
mary barrier for quantum computation, limiting the time that a quantum computer can maintain
the quantum information, and consequently, the circuit depth (number of quantum gates). To over-
come this limitation, we can encode the quantum state in a quantum error correction (QEC)

code [9]. However, this approach adds a costly overhead in the number of qubits and quantum
gates used.

3 RELATED WORKS

Quantum programming is a relatively new paradigm with notable contributions from both the
industry and the academy [6, 11, 13, 14, 16, 19, 22, 23, 26, 29, 31, 32, 36, 39, 42]. With a few exceptions
[26, 29], the past ten years cover the development of most quantum programming language and
quantum programming software [1, 7, 8, 21, 37, 38], like libraries and simulators.

Analog to classical programming languages, we can divide quantum programming languages
into low and high-level. The low-level quantum programming languages, known as quantum as-
sembly or quantum instruction set, are the quantum variant of the classical assembly. Similar to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:5

assembly languages that describe instructions that have a straight translation to machine code,
the quantum assembly describes operations that have a direct translation to control signals of a
quantum processor.

OpenQASM [6] and Quil [36] are quantum assembly languages used to program the quantum
computers of IBM and Rigetti, respectively. OpenQASM is a straightforward description of a quan-
tum circuit used as a compilation target of some high-level quantum programming languages
[19, 32], and as an intermediary representation of some quantum computing software [24]. The
cQASM [22] language is a quantum assembly comparable to OpenQASM used in the OpenQL [21]
quantum computer stack. Quil has a classical state composed of the measurement results and the
program counter, and a quantum state composed of the qubits’ state. Similar to ordinary assembly,
Quil has jump instructions to control the program counter, allowing it to describe classical control
statements like if-then-else, for, and while. The ability to control the program counter is the
main difference between Quil and OpenQASM (and cQASM).

Between the high-level quantum programming languages, there is a subset of quantum circuit
description languages with the focus on a scalable description of larger quantum circuits. Exam-
ples are the languages LIQUi |〉 [42], Quipper [14], QWIRE [32], and Scaffold [19]. The LIQUi |〉 is
a hardware-independent language embedded in F# that supports architecture-specific timing and
layout constraints and provides tools for studying quantum noise and quantum error correction
code. Quipper is a Haskell-embedded language used to estimate and reduce resources of quantum
circuit execution. QWIRE is a Coq-embedded language that uses a linear type system to ensures
the non-violation of the no-cloning theorem [43]. The Scaffold is a C-embedded language that can
describe quantum sub-circuits as a classical logic circuit with the Classical-to-Quantum-Gate mod-
ules. Implementing a quantum programming language as an embedded programming language is
a usual strategy [14, 16, 19, 32, 42] that can reduce development costs and provide vast libraries
for the quantum programming language.

Q# [39] and Silq [5] are high-level quantum programming languages not limited by the quan-
tum circuit model. Q# allows the descriptions of statements with classical control and quantum
body, e.g., the repeat-until-success statements [30], similar to the C do-while, that execute
a quantum operation until the test, that is boolean, hit success. Such construction is not possible
in a quantum circuit. However, quantum circuit description languages can implement loops with
classical control and quantum body if it can run at compilation time, e.g., Scaffold implements a
for loop using the loop-unrolling strategy. Silq provides construction safely to discard temporary
quantum variables by reversing the computation to undone possible entanglements. The objec-
tive of Silq is to reduce the quantum primitives needed to describe some quantum operations, and
consequently, the size of the quantum code.

The most evident target for a quantum programming language is a quantum computer. Al-
though, most quantum programming languages provide constructions that go beyond the NISQ
computer processing power [14, 39]. This way, several targets are also provided. For example, clas-
sical simulators with usually less than 30 qubits; resource estimators to calculate the cost of a par-
ticular quantum execution, usually in numbers of qubits (circuit width) and gates (circuit depth).

In comparison with the related works, Ket is a high-level quantum programming language with
expressivity similar to Q#. The main difference between Ket and the other high-level quantum
programming languages is the quantum programming scenario in which we developed Ket to
operate. We highlight that none of the related works is suitable for our quantum programming
scenario. We present our quantum programming scenario in the next section. Since Ket is more
expressive than the quantum circuit description languages [14, 19, 32, 42], we only compare Ket
with Q# (Subsection 7.1). Silq also has the same expressivity power as Ket but focuses on different

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:6 E. C. R. da Rosa and R. de Santiago

Fig. 2. The flow of execution of the runtime architecture.

aspects of quantum programming, making the comparison between Ket and Silq have the same
effect as the comparison between Q# and Silq (provided by Silq authors [5]).

Ket uses Libket to generate quantum code in Ket Quantum Assembly (KQASM), a low-level
quantum programming language part of the framework that has an expressive power comparable
to Quil. As we designed KQASM to provide the minimum needs of the proposed runtime architec-
ture and take advantage of the Ket Bitwise Simulator, KQASM does not have any breakthrough
over other quantum assemblies languages. The execution target available, KBW, can run KQASM
codes and return measurement results and dumps of the quantum state.

Libraries like Cirq [8], OpenQL [21], ProjectQ [37], PyQuill [36], and Qiskit [1] also address
quantum programming but from a different perspective. Those libraries provide means to pro-
gramming a quantum computer by directly appending operations to a quantum circuit/program
and explicitly choosing when and where the quantum code will run, while Ket and other quantum
programming languages abstract those and other steps from the programmer. We do not consider
those libraries as related works. To highlight this different perspective between Ket and quantum
programming libraries, we compare Ket and Qiskit in Subsection 7.1. We chose Qiskit as the base
for this comparison as it is the most widespread quantum programming library.

4 QUANTUM PROGRAMMING SCENARIO

We summarized the execution flow of our proposed runtime architecture in Figure 2. In it, a com-
piler or interpreter inputs a single source code and output both the classical and quantum codes
that efficiently run on its corresponding architecture. Next, a local computer runs its respective
output, which coordinates the execution of the quantum code in a quantum computer, that is avail-
able in the cloud.

Based on NISQ and near-future quantum computers, we designed the runtime architecture fol-
lowing the constraints that a quantum computer is available in the cloud with a batch scheduler
that does not allow interaction during its execution. These restrictions comply with the quantum
computing service provided by IBM and Amazon Braket. Within this limitation, a local computer
coordinates the quantum execution by sending a batch job to the quantum computer in the cloud,
which sends back the measurement results. However, in the meantime, no interaction is possible
between the local and the cloud-based quantum computer.

Quantum computers also have severe time constraints due to decoherence and gates fidelity,
which impose restrictions on the complexity of the quantum execution. This limitation takes form
in the number of operations that a quantum execution can perform before the qubits lose informa-
tion. This way, any quantum code needs to be as specific as possible, making it hard to program
generic and dynamic quantum applications.

One of the problems solved by the proposed runtime architecture is how to program an inter-
active classical-quantum application. Other quantum programming languages [5, 13, 36, 39] also

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:7

Fig. 3. The proposed runtime architecture for dynamic interaction between local classical and cloud-based

quantum computers, with the quantum computer processing in batch.

address this problem but not considering the presented scenario of cloud-based quantum compu-
tation. Also, the proposed runtime architecture is suitable whenever classical and quantum com-
puters cannot communicate fast enough that the quantum computer does not idle. The cloud is
one possible and likely scenario.

Another constraint that is not addressed by the related works is for a single source code to gen-
erates well-separated classical and quantum codes. You can use embedded languages like Quipper
to implement a whole classical-quantum application, but you cannot separate the quantum end
classical execution to run on its respective computers. However, Q# has a well-separated quantum
code. However, a general-purpose programming language (Python, C#, or F#) is required to coor-
dinate the quantum execution and implement the classical one. We consider that a single source
code for a whole classical-quantum application facilitates its development, since there is no need
to interface two programming languages.

We assume that the quantum computer can execute simple classical expressions and branch in-
structions to support the execution of loops (feedback) and controls (feedforward) statements, e.g.,
while and if-then-else. Although today’s quantum computers are limited in terms of control
flow, which impacts the classical-quantum interaction, there are experimental results of quantum
computers with full dynamic execution capacity [13].

We emphasize that none of the related works are suitable for the quantum programming sce-
nario shown. Different from the Ket quantum programming language that was designed specifi-
cally for this scenario.

5 PROPOSED RUNTIME ARCHITECTURE

We designed the runtime architecture summarized in Figure 3 for dynamic interaction between
classical and quantum computers, following the constraints of Section 4. The main limitation of this
dynamic interaction is the batch execution of the quantum computer. This problem implies that the
classical computer cannot interact with the quantum one during the computation, e.g., it cannot
decide which operation will be executed by the quantum computer based on some measurement
performed on the same execution. This lack of interaction causes difficulties on programming of
some quantum algorithms and protocols, e.g., the quantum teleportation shown in Figure 4. The
proposed runtime architecture relies on quantum computer’s ability to execute simple expressions
and branch instructions [13] and the generation of the quantum code during the classical runtime
to overcome these limitations.

The proposed architecture is composed of several components with the following workflow.
First, a program makes calls to a shared library that handles the quantum operations. This program

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:8 E. C. R. da Rosa and R. de Santiago

Fig. 4. The quantum teleportation circuit, where |β00〉 = |00〉+ |11〉√
2

. The last two quantum gates Z and X are

controlled by the measurement result of the top two qubits.

can be a binary file generated by a compilation process or an interpreter executing a source code.
Then the shared library generates the quantum code during runtime and sends it to a transpiler
that decomposes the controlled quantum gates and returns the processed quantum code. After
that, the shared library sends the quantum code to a simulator or a quantum computer, which
needs extra steps to execute. Finally, the results of the quantum code execution, which are the
measurement results, are returned to the shared library and then returned to the program. The
measurement results are classical data and can be used by the program as such.

The Ket Quantum Programming framework implements part of the proposed runtime archi-
tecture. As we initially focus on simulated quantum execution, quantum gate decomposition,
quantum code optimization, and execution in quantum hardware are future works. The following
subsections detail every component of the runtime architecture as well as their interactions and
intermediaries.

5.1 Shared Library

The shared library is an intermediary for other components of the runtime architecture. It handles
calls to allocate and free qubits, applies quantum operations and measurements. We detail the
shared library implementation, the Libket, in Section 6, and next, we present its functionality.

The shared library uses the calls performed by the program to generate the quantum code, which
is a quantum intermediary representation that is not necessarily equivalent to a quantum circuit.
The quantum code can have higher-level constructions, such as functions, loops, classical condi-
tional statements, and arbitrary gates with an unlimited number of control qubits. As the library
is independent of the quantum execution target, the quantum code has no preset limit of qubits.

To improve performance and coding dynamism, the library shall produce multiple unrelated
quantum codes at the same time. For example, if we need a random number1 for a quantum oper-
ation, then we can initialize a second independent quantum code to generate the random number.
This approach reduces the number of qubits and (consequently) gates required to run the quantum
application by splitting it into several quantum executions.

The two main traits of the shared library are the ability to generate the quantum code at runtime
and that measurements return futures, in other words, promises of results. Those two features
are essential for the runtime architecture ability to execute generic quantum applications with
dynamic execution and interaction between classical and quantum computers.

Due to decoherence, every quantum operation needs to be as optimized as possible. Therefore,
it is discouraged to construct a sequence of gates that operates based on an undefined classical
input. For example, Shor’s algorithm needs to perform modular exponentiation on a superposition
taking a state |x〉 |0〉 into |x〉 |ax mod N 〉, where a and N are classical parameters. So, to optimize
a quantum execution for specific classical parameters, either they need to be statically defined

1Quantum computers can generate truly random numbers.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:9

(compile-time resolvable), or we need to delay the quantum code generation to runtime where
those parameter values are available.

Besides enabling the description of parameterized quantum applications, as described above,
the generation of quantum code at runtime also permits programming responsive quantum appli-
cations, which can change its execution based on user input, sensor measurement, or quantum
execution. For example, those are features necessary for information systems that use quantum
computation for data processing.

Some quantum application, like the quantum teleportation of Figure 4, uses the result of a mea-
surement to control which gates are applied. However, as the quantum computer’s decoherence
time may be shorter than the response time between the classical and the quantum computer, a
quantum computer executes in batch. So, in those situations, it is the quantum computer that needs
to use the measurement results to decide what to do. That is in which measurement results as a
future take place.

Inspired by concurrent programming, when a program calls for a measurement, the shared li-
brary returns a future instead of the measurement result. A future holds a promise for the mea-
surement result that is fulfilled by the shared library when the classical computer needs it. Using
future variables, control statements with quantum operations are possible in the runtime archi-
tecture, since they can be placed in the quantum code and executed by the quantum computer. A
future can hold other information that is not necessarily a measurement result but is only available
in the quantum computer, e.g., the result of expressions with measurement results and loop control
variables. We present examples of future usage in the Ket programming language in Section 7.

A shared library, in contrast to a static one, is loaded during the execution and not linked stat-
ically into the binary executable. It means that there is no need to recompile the code on every
update as soon as it maintains the same interface. Still, with limitations, a static library can replace
the shared library.

5.2 Quantum Gate Decomposition

The transpiler performs source-to-source translation with quantum gate decomposition [17, 41]
and architecture-independent optimizations [17, 41] to prepare the quantum code for quantum
hardware execution or to estimate the resources needed for a quantum execution. The input and
output languages can be the same, with just the decomposition of the multi-controlled quantum
gates. On the current NISQ computers, we can use the languages OpenQASM and Quill for IBM
and Rigetti quantum computer execution, respectively.

The output language, usually a quantum assembly, must be expressive enough to represent
every possible construction of the quantum code and simple enough to be efficiently executed by
a quantum computer or simulator. Some quantum programming languages are more expressive
than others. For example, the Quil can represent loops, using label and branch instructions, that is
not possible with the OpenQASM.

The Ket Quantum programming framework does not yet implement quantum gate decomposi-
tion and architecture-independent quantum code optimizations.

5.3 Quantum Simulator

While we are in the NISQ era, far from large scale fault-tolerant quantum computers, simulating a
quantum computation may be the best option to test a quantum algorithm or application. However,
even with the arrival of better quantum computers and despite the exponential simulation time,
simulators are still useful for debugging quantum applications due to the impossibility of looking
into a non-simulated quantum superposition.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:10 E. C. R. da Rosa and R. de Santiago

Simulators can apply multi-qubit gates like the Toffoli gate, an oracle for Grover’s algorithm [15],
and modular exponentiation [34] in a single quantum operation. So simulated quantum executions
can improve performance by executing the quantum code without the gate decomposition process
needed for a quantum hardware execution.

5.4 Quantum Hardware Execution

Quantum assembly describes the execution of a quantum application in terms of logical qubits.
Those are ideal qubits, free of noise and fully connected, where no error corrections are needed, and
every qubit communicates with each other, e.g., it is possible to apply a CNOT between any qubit.
However, quantum computers work with physical qubits subject to noise (errors) and connectivity
limitations.

Logical qubits of a quantum assembly need to be mapped into physical qubits to run on a
quantum computer. We call this process of qubit allocation [35] or quantum circuit mapping [18].
Heuristics for optimization may vary from each quantum computer vendor, since each one ex-
plores different qubits layouts and construction technology.

Despite being too expensive for NISQ computers, quantum error correction is a fundamental
part of fault-tolerant quantum computers. So, the quantum assembly may pass through a QEC en-
coder before the quantum hardware execution. Similar to the qubit allocation, QEC encoding also
depends on the quantum architecture and may be performed by a proprietary software provided
by the quantum computer vendor.

The Ket Quantum Programming framework does not yet implement quantum hardware
execution.

6 LIBKET IMPLEMENTATION

The core of the Ket Quantum Programming is the Libket, a C++ implementation of the shared
library proposed with the runtime architecture. KQASM is the quantum code generated by Libket.
We designed KQASM to take advantage of Ket Bitwise Simulator (presented in Section 8). It features
a classical control with labels and branch instructions, similar to Quil. The Ket language uses a
Python wrapper of Libket with some adaptations.

Libket features three main classes, process, quant, and future. The process class, not ac-
cessible in the Python wrapper, controls the quantum code generation, which among other things,
handles (logical) qubit allocation, quantum gate application, measurement, and label name conflict.
The quant class store an array of qubits’ reference resulting from an allocation call to a process.
The future class stores an int that is only available after the quantum execution.

For a programmer be able to describe several unrelated quantum executions inside of a single ap-
plication, the library used a global stack to store process instances, where every class and method
of the Libket always communicates with the top process instance. A process in the global stack
does not have access to the process below like a programming language scope does. In Section 7,
we present how to handle the process stack in the Ket programming language.

KQASM has a basic bock structure similar to LLVM IR [25], where a block of code begins with
a label and ends, except the last block, with a jump or branch instruction. The first block started
by the label @entry is the entry point for execution, which ends at the end of the file (EOF).
The assembly also has an infinite number of qubits and registers that need to be managed by the
execution target. For KQASM code examples, see Section 7.

In addition to the traditional one-qubit gates Pauli X , Y , and Z , Hadamard, S , S†, T , and T †,
the KQASM also provides a parameterized phase and the rotation gates RX (Equation (6)), RY
(Equation (7)), and RZ (Equation (8)):

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:11

RX |0〉 = cos
θ

2
|0〉 − i sin

θ

2
|1〉 ,

RX |1〉 = −i sin
θ

2
|0〉 + cos

θ

2
|1〉 e−iθ /2 |0〉 ,

(6)

RY |0〉 = cos
θ

2
|0〉 − i sin

θ

2
|1〉 ,

RY |1〉 = − sin
θ

2
|0〉 + cos

θ

2
|1〉 ,

(7)

RZ |0〉 = e−iθ /2 |0〉 ,

RZ |1〉 = eiθ /2 |1〉 .
(8)

The assembly does not implement any multiple qubit gate, though it is possible to add qubits of
control for any one-qubit quantum gate. For example, the instruction CTRL [q0], X q1 performs
a CNOT gate, and CTRL [q0, q1], X q2 a Toffoli gate. To perform a controlled operation, first,
Libket stacks the qubits of control, and then the quantum gates are called.

As quantum computation is inherently reversible, Libket can generate the adjunct of a quantum
operation inverting the order of the quantum gates and change it for its inverse. This functionality
is only available for quantum gates. The library constructs KQASM with the inverse operation
using a stack of stacks of gates as follows. A call to begin an inverse section pushes an empty stack
of gates. However, a call to end an inverse segment has two possibilities. First, if the outer stack
has one element, the inner stack pops the gates into the KQASM file; else, the inner stack pops
the gates into the stack below. Inside of an inverse section, the library places the quantum gates
into the top stack. If the outer stack has an odd number of elements, then the library pushes the
adjunct quantum gate instead.

Every call to Libket directly or indirectly append instructions to a KQASM file, which has all the
information needed for the quantum execution. The quantum code execution is the last action of
a process. When requested by a future variable, the library sends the generated KQASM file to
Ket Bitwise Simulator, which returns the value of the integers, so that the process can fulfill the
future variables. Optionally, Libket can also export the KQASM file.

Libket also provides the dump class that makes an image of a quantum state, returning the su-
perposition with its probability amplitude. We can use this class to debug a quantum application
with a simulation. As with future variables, the result of a dump variable is only available after
the quantum execution. Dumping a quantum state has no side effect on it, but in some cases, it can
exponentially increase the simulation time. It is impossible to implement the behavior of a dump
in quantum hardware due to the effect of measurement of the no-cloning theorem.

7 KET PROGRAMMING LANGUAGE

Ket is a Python-embedded classical-quantum programming language that friendly exposes the
Libket functionalities enabling dynamic quantum programming in an architecture that is suitable
for the current and near-future quantum computers. As a high-level quantum programming lan-
guage, Ket provides quick development of quantum applications using the well-known Python
constructions with the addition of a few quantum specifics. This approach should be a natural
way for Python programmers to deal with quantum programming, allowing them to quickly im-
plement and test quantum applications, smoothing the learning of quantum computation and the
development of new quantum algorithms and applications.

In addition to the Python types, Ket offers two new ones, the quant type, which implements an
array of qubits references, and the future type, which is used to store variables in the quantum

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:12 E. C. R. da Rosa and R. de Santiago

Table 1. Quantum Gates Available in Ket

Gate Function Effect

Pauli X X(q : quant)
X |0〉 = |1〉
X |1〉 = |0〉

Pauli Y Y(q : quant)
Y |0〉 = −i |1〉
Y |1〉 = i |0〉

Pauli Z Z(q : quant)
Z |0〉 = |0〉
Z |1〉 = − |1〉

Hadamard H(q : quant) Equation (1)

S S(q : quant)
S |0〉 = |0〉
S |1〉 = i |1〉

S Dagger SD(q : quant)
S† |0〉 = |0〉
S† |1〉 = −i |1〉

T T(q : quant)
T |0〉 = |0〉
T |1〉 = 1+i√

2
|1〉

T Dagger TD(q : quant)
T † |0〉 = |0〉
T † |1〉 = 1−i√

2
|1〉

Phase phase(λ : float, q : quant)
P |0〉 = |0〉
P |1〉 = eiλ |1〉

RX RX(θ : float, q : quant) Equation (6)
RY RY(θ : float, q : quant) Equation (7)
RZ RZ(θ : float, q : quant) Equation (8)

computer. It also provides a universal set of quantum gates, presented in Table 1, and statements
to operate with controlled and inverse quantum operations.

The quant type provides a default constructor that initializes the qubits in the state |0〉, and
a dirty constructor that assigns dirty qubits to a new quant variable. When no longer in usage,
you can free a quant variable, so their qubits can be allocated by another quant. Before calling
free, all qubits must be at the state |0〉, or the dirty flag must be set True. A quant variable can
reallocate free dirty qubits, but their usage may cause side effects due to previous entanglements.
The functions of Table 1 apply the quantum gate on every qubit of a quant variable. However, the
quant type permits the use of brackets to address a range of qubits, as a Python list.

To implement multi-qubits quantum gates, the Ket language allows the addition of qubits of
control in existing quantum operations with the function ctrl(c, gate, *args, **kwargs)
and the statement with control . For example, Code 1 presents a possible implementation for the
CNOT gate for same size quant variables, and Code 2 presents a possible implementation for the
Fredkin gate (Equation (9)), also known as the CSWAP gate:

Fredkin |abc〉 =
{
|abc〉 , for |a〉 = |0〉 ,
|acd〉 , for |a〉 = |1〉 . (9)

As several quantum algorithms take advantage of the quantum computing reversibility, the
Ket language provides constructions to make easy the application of inverse quantum gates. The
function adj(gate, *args, **kwargs) calls the inverse of a quantum operation, and the state-
ment with inverse initializes a scope that executes backward. For example, with the Quantum

Fourier Transformation (QFT) of Code 3, the adj function can be used to call the inverses QFT.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:13

Code 1. CNOT gate implementations in Ket. Code 2. Fredkin gate implementation in Ket.

Code 4 presents examples of the KQASM generated by the call of the QFT and the inverse QFT
with three-qubits quant variable.

Code 3. Quantum Fourier Transformation implementation.

The QFT of Code 4 is an example of the benefits of the runtime quantum code generation. The
code defines an operation for an unknown number of qubits, so if the quantum code generations
were in the compilation time, additional controls, loop, and recursion would be necessary for the
quantum execution. However, since the runtime has this information, Libket will perform a loop
unrolling to generate the quantum code with the required operation only.

Quantum measurements in the Ket quantum programming language do not directly return the
result. Instead, it returns a future variable as a promise that the value will be available when
needed by the classical computer. And until then, Ket can use the measurement results to control
operations on the quantum computer. A future variable can operate with another future or an
int, with the outcome still been a future. Ket also integrates the future type with the if and
while statements changing their semantics, so they run on the quantum computer if the test is a
future variable.

An example where the return as a future is useful is the implementation of the quantum telepor-
tation of Figure 4. There the application of some quantum gates depends on classical information
obtained by measurements. Code 5 shows the implementation of the quantum teleportation and
the KQASM generated during runtime. Note that the if statements of the function bell (lines 3–6,
left) are not present in the quantum code, since the values aux0 and aux1 are known by the classi-
cal computer. However, Libket places the if statements of the function teleport (lines 17–20, left)
that operates with a measurement result in the quantum code (lines 11–23, right). The method get

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:14 E. C. R. da Rosa and R. de Santiago

Code 4. The KQASM generated by calling qft from Code 3.

of the last line informs Libket that the classical computer needs the measurement result, triggering
the quantum code execution and return the measurement.

Quantum error correction protocols are good examples of interactive quantum applications. To
illustrate how Ket handles classical-quantum interaction, we implement a class that inherits from
quant, implementing a one-logical-qubit encoded in the Steane stabilizer code [9]. We implement
the Steane code class of Code 6 just as an example. As presented in the proposed runtime archi-
tecture, we expect quantum error correction in a lower-level of abstraction. Stabilizer codes can
correct errors through projection operations. Those operations use auxiliary qubits measured to
form the error syndrome, which tells which error occurred in which qubit. As implemented in lines
37–50 of Code 6, the error syndrome processing is classical but executed in the quantum computer.
However, as Ket dynamically performs control statements accordingly where the information is
available, the programmer does not need to worry if it is the classical or the quantum computer
that corrects the error.

Every operation performed in the quantum computer is attached to a process, which you can
create using the statement with run. Ket allows to nest process, but as they are a separated quan-
tum execution, there is no communication between them (like a scope in programming languages).
The operations performed outside of a with run statement communicates with the global process,
initialized at the program startup.

In short, every Ket’s quantum operation calls Libket, which adds instruction in the quantum
code (KQASM). Binary operations with future variables are also placed in the quantum code,
since the values are not available to the local classical computer. We emphasize that quantum
measurements return a future variable. Before executing an if or while statement, Ket checks
if the test is evaluable by the local classical computer. If so, then the classical computer runs the
statement as defined by Python. Otherwise, the local computer calls Libket to reconstruct the
statement semantics in the quantum code, using jump and branch instructions. The method get
of future requests the value from the cloud-based quantum computer, making it available to the
classical computer. As we assumed that a quantum computer process in batch, once it returns the
measurement results, its quantum state is dissolved. In the loop of Libket sending the quantum
code to the quantum computer that returns the measurements, Ket can adapt the quantum code
as needed in every interaction.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:15

Code 5. Implementation of the quantum teleportation circuit of Figure 4 in Ket (left). On the right
is the KQASM generated during the runtime. The future variables m0, m1, and result reference
the values of the INT registers i0, i1, and i6, respectively.

7.1 Comparative with Other Quantum Programming Platforms

Next, we present a comparison between Ket and two relevant quantum programming platforms,
Qiskit and Q#. We already discuss them in Section 3.

Qiskit is a quantum programming library for Python and not a programming language. It has a
lower level of abstraction compared with Ket. To highlight this difference, we present Code 7 that
has two equivalent implementations using Ket and Qiskit. The code prepares three qubits in the
state

1
√

2
|000〉 + 1

√
4
|100〉 + 1

√
4
|111〉 , (10)

using a controlled version of the Bell circuit (the quantum circuit of Figure 1 without the measure-
ments) and dumps the quantum state.

In Code 7, we can see that Qiskit quantum programming focuses on quantum circuit composi-
tion, while Ket treats qubits (quant) as first-class citizens. Also, note that the trigger for the quan-
tum execution is abstracted in Ket (it happens on line 11). However, using Qiskit, the quantum
execution needs to be explicitly requested.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:16 E. C. R. da Rosa and R. de Santiago

Code 6. Class for one-logical-qubit in the quantum error correction Steane Code [9].

With Ket, you program manipulating variables, while with Qiskit, you program generating the
quantum assembly. We believe that manipulate qubits is a more intuitive way for quantum pro-
gramming than compose quantum circuits. Also, in contrast with Qiskit, Ket requires fewer oper-
ations to get started with quantum programming.

Q# is a high-level quantum programming language as Ket, and they are similar in terms of
expressive power and abstraction. In Code 8, we present two equivalent implementations in Ket
and Q# to prepare two qubits in the state

1
√

3
|00〉 + 1

√
3
|01〉 + 1

√
3
|10〉 (11)

using postselection. Note that we can simulate the Q# statement repeat-until-success in Ket
with a while loop. Although Q# can run stand-alone, it is designed to be called by general-purpose
programming languages.

Ignoring the list of open statements, Q# and Ket programs are similar in the number of lines of
code. But we believe that the Python base of Ket makes the language quick and easy to learn than
Q# with its C#/F# inspired syntax.

Since the repeat-until-success construction is out of the bound of the quantum circuit model
expressiveness, we cannot implement Code 8 in a quantum circuit description language. To execute
this implementation, we also need the quantum computer to support control flow, which is limited
in today’s quantum computer, but we expected it to be available soon [13].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:17

Code 7. Quantum program to prepare three qubits in the state 1√
2
|000〉+ 1√

4
|100〉+ 1√

4
|111〉 imple-

mented in Ket (left) and Python using Qiskit (right). At the bottom is the output of the execution
of each program.

7.2 Design Decisions and Limitations

In the next paragraphs, we will discuss some design decisions and limitations of the Ket program-
ming language implementation.

With control: uantum controlled operations are the quantum analog of the if statement, so why
does not use the Python pyif to apply controlled gates instead of the ketwith control? The answer
is: to avoid confusing programmers. A controlled operation is not equal to a quantum if, because
it requires all qubits to be in the state |1〉 to execute, and not in a state different of |0 . . . 0〉 to
execute. So, the use of pyif to express controlled operation could mislead programmers, hoping
the quantum program to apply the traditional semantics into the quantum state.

With run: The ability to describe multiple unrelated quantum execution is essential to program
a more extensive quantum application. In the Ket programming language, it is achieved by us-
ing the ketwith run statement. However, the ability to automatically attach the operations on
the quantum computer to a process based on the qubit entanglement would increase the coding
dynamism. We plan this feature for future implementations.

No-cloning theorem: The no-cloning theorem [43] tells us that we cannot copy a qubit. So, the
semantic of a quantum programming language should ensure this property. A possible strategy,
implemented in QWIRE [32], is to use a linear type system on the quantum variables to secure the
no-violation of the theorem. However, Ket uses a different approach. A quant variable holds an
array of qubits reference and not the actual qubits. This perspective allows the use of the quant

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:18 E. C. R. da Rosa and R. de Santiago

Code 8. Quantum program to prepare two qubits in the state 1√
3
|00〉 + 1√

3
|01〉 + 1√

3
|10〉 (using

postselection) implemented in Ket (left) and Q# (right). At the bottom is the output of the execution
of each program.

type in assign statements without the worry of the no-cloning theorem, since the language will
perform it by referencing and not copying (see Code 9 as an example).

Code 9. Example of the effect of an assignment with a quant.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:19

Future indexing qubits: While indexing the qubits of a quant using a future variable would
improve coding dynamics, e.g., refactoring Code 6 to change the lines 37–50 for something like
keterror(self[index]). This feature would make it impossible to identify the violation of the
no-cloning theorem during the classical computer runtime. For example, in a controlled quantum
operation, we cannot ensure that a future variable is not indexing a control qubit used as a target
and vice versa.

Future get: The future.get tells Libket that the local computer needs a value from the quantum
computer. Ideally, a static analysis of the source code should provide this information, performing
the get when necessary. However, this analysis would either fail or impose a limitation in a lan-
guage like Python, the Ket base-language.

Future set: Since the assign statement is essential for the Python dynamism, it does not allow
the overload of the operator (the __setattr__ does not qualify). So, Ket provides the method
future.set to assign a value to a future variable. We chose not to change the language semantic
for this type.

Overhead: As Python only defines the variable types at runtime, the integration of the future
type in the statements ketif and ketwhile requires additional instructions to identify if it will
run in the classical or quantum computer. Those supplementary operations introduce overhead
on the statement execution.

A new language? Why do we not provide Ket as a Python package instead of a new language?
As the integration of the future type with the Python control statements is fundamental for our
proposal, providing Ket only as a Python package would not support it. The Ket interpreter uses
the Python parser to generate the program AST and the Python compiler to compile it. However,
before sending the tree for the compiler, the interpreter performs some additional transformations.
You can also use Ket as a Python library (with limitation), and we provide the function import_ket
to import a Ket code as a Python module and the decorator code_ket to handle future variables
inside a Python function.

8 KET BITWISE SIMULATOR

Although some small quantum computers are freely accessible through the Internet, simulating
one is useful to test and debug quantum applications, even with the exponential complexity of
the problem. Besides the need to wait in a queue, a quantum hardware execution is subject to
noise that can invalidate the computation. However, simulated quantum executions do not need
to comply with some quantum limitations, like the impossibility to check into the superposition
and qubits connectivity (a construction constraint).

KBW uses the bitwise representation [7]. In contrast to the usual approach that uses matrix
multiplication to handle quantum numeric simulations, the bitwise representation uses a hashmap
to store the quantum state and bitwise operations to apply quantum gates. In summary, KBW
represents a qubit |ψ 〉 in the hashmap qubits with the following equivalence:

|ψ 〉 =
∑

k

αk |k〉 ≡
∑

k

qubits[k] |k〉 , (12)

and it iterates over the data structure to apply quantum gates.
KBW implements the quantum gates available on KQASM. However, it also allows the applica-

tion of user-defined quantum gates through plugins, using the C++ Ket Bitwise API that exposes
the hashmap of the quantum simulation. In contrast to gate decomposition of complex quantum
operations, plugins are easier and fast to implement. For example, the modular exponentiation

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:20 E. C. R. da Rosa and R. de Santiago

needed by Shor’s algorithm [34] has a complexity of O (n3) in terms of gates [40], and you need
to perform the decomposition for every possible value of the parameters n and a. But you can
implement it using a plugin that works on a range of input parameters, all with constructions that
are more familiar for programmers. Code 10 presents the core of the plugin libket_pown.so that
implements the modular exponentiation.

Code 10. Core of the libket_pown.so that implements the quantum operation |j〉 |0〉 →
|j〉 |x j mod N 〉. Variable L is equal to �log2 N � and size is equal to 3 × L + 1.

The computational time of the bitwise representation grows exponentially with the amount
of superposition in the quantum system and not with the number of qubits as usual. However,
our implementation also limits this exponential scaling by the amount of entanglement in the
quantum system. It means that simulating a quantum system with all qubits in superposition but
with sets of few entangled qubits can have up to an exponential speedup comparing with other
simulators. Inspired in the Qrack simulator [38], we arrange this improvement by keeping the
qubits in separate hashmaps when they are not entangled. As KBW only implements one-qubit
gates, besides plugins, the only way to generate entanglement is by adding control qubits to the
quantum gate. However, KBW only considers that the target and the control qubits are entangled
if the control is under superposition. Also, control qubits that do not generate entanglement only
add linear (small) time to the application of the quantum gate.

Qrack does not use the Bitwise representation. Instead, it stores qubits and quantum gates in
matrices and operates with them through matrix multiplication. With the KBW implementation,
we show that Qrack optimization (keep qubits separated while they are not entangled) is possible
in the Bitwise representation.

We propose three benchmarks that vary in terms of superposition and entanglement to evalu-
ate the KBW performance. We compare the KBW performance with Cirq (0.9.1) [8], Forest QVM
(1.17.1) [36], ProjectQ (0.5.1) [37], Q# simulator (0.15) [39], QSystem (1.2.0) [7], QX Simulator (0.3)
[27], Qiskit-Aer’s QasmSimulator (0.7.6) [1], Qrack (5.4.0) [38], and QuEST (3.2.0) [20]. We run the
benchmarks on a computer with an Intel Core i7-8565U CPU, 2x 8 GB DDR4 (Speed: 2667 MT/s),
using the Linux Kernel 5.10.18-1-MANJARO.

All benchmarks start with the qubits at the state |0〉. The first benchmark prepares and measures
a maximum entangled GHZ state of n qubits:

GHZ =
1
√

2

(
|0〉⊗n + |1〉⊗n

)
. (13)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

Ket Quantum Programming 12:21

Fig. 5. Benchmarks.

As shown in Figure 5(a), since the qubits are at two quantum states on every step of the
computation, KBW has a linear scale as QSystem (the original implementation of the bitwise
representation).

The second benchmark applies the QFT on n qubits and measures them. We present the results
in Figure 5(b). Before the measurement, all qubits are in superposition on the state

|ψ 〉 = 1
√

2n

2n−1∑
k=0

|k〉 . (14)

However, since this benchmark generates no entanglement, the KBW has a linear scale similar to
Qrack, as expected.

The final benchmark applies the QFT on a GHZ state of n qubits and measures them. As shown
in Figure 5(c), this benchmark is the worst case of presented an exponential scaling like the other
simulators.

The benchmarks demonstrate the power of KBW. We do not address any benefit of the Ket pro-
gramming language on them. We chose these simple benchmarks to illustrate where the KBW can
have an advantage. Those advantages have a different impact on different algorithms. For exam-
ple, Shor’s algorithm runs faster than Grover’s algorithm in KBW, even that Shor’s factorization
algorithm uses more qubits. In Figure 6(a), we compare Grover’s and Shor’s algorithms execution
time in KBW. Code 11 presents the used Grover’s algorithm implementation, and Code 12, the
order-finding algorithm used in Shor’s algorithm. The execution time of Figure 6(a) considers the
execution of Shor’s algorithm as a whole and not only the order-finding routine.

In Grover’s algorithm, to execute an oracle U |a〉 |b〉 = |a〉 | f (a) ⊕ b〉, where the f (a) has 2s

possible entries, we need s + 1 qubits where all of them are entangled and in total superposition.
KBW’s worst-case scenario. However, while Shor’s algorithm needs 3L + 1 qubits to factor an

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:22 E. C. R. da Rosa and R. de Santiago

Fig. 6. Comparison between Grover’s search algorithm and Shor’s factorization algorithm.

Code 11. Grover’s search algorithm [15]. Code 12. Order-finding quantum algorithm used
in Shor’s factorization algorithm [34].

L-bits number, we only need to simulate 22L+1 quantum states (≈2/3 of the qubits in superposition).
Also, we can efficiently execute the modular exponentiation need by Shor’s algorithm using a
Ket Bitwise plugin, drastically reducing the number of quantum gates needed. We present the
number of quantum gates that each algorithm needs in Figure 6(b). While we need to execute the
order-finding routine three times, we plot the number of quantum gates for one execution only.

9 CONCLUSION

With the constraint that a quantum computer is available through a cloud-based service that
processes in batch, we propose a runtime architecture that enables dynamic interaction between
classical and quantum computers. We validated this proposal with the implementation of the
Ket Quantum Programming framework2 that features a Python-embedded classical-quantum

2https://quantum-ket.gitlab.io.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

https://quantum-ket.gitlab.io

Ket Quantum Programming 12:23

programming language named Ket, the C++ quantum programming library Libket, and the KBW
for quantum execution.

The proposed runtime architecture uses runtime quantum code generation to enable generic
quantum programming while keeping the quantum code as specific as possible, minimizing un-
necessary quantum executions. We also introduce the concept of futures to handle classical in-
formation generated during the quantum execution, allowing the program to control the quan-
tum execution without the intervention of the local computer. We implement all these concepts
in the C++ library Libket, turning it transparent for the programmer in the Ket programming
language.

We believe that Ket is easier to get started and a more intuitive way to program quantum comput-
ers, especially for the part of the quantum programming community that is already familiar with
Python because of its vast number of libraries for quantum computation. With Ket, we show that
we can have a separable quantum and classical code/execution using a single classical-quantum
programming language and without needing to interface a general-purpose language with a quan-
tum specific one like Q# [39]. Also, we consider that the higher-level abstraction of Ket over quan-
tum programming libraries like Qiskit [1] and others [8, 21, 36, 37] can stimulate the development
of new quantum algorithms and applications.

Even though the Ket programming language allows construction that goes beyond NISQ [33]
computer capacities, the proposed runtime architecture is suitable for current and near-future
quantum computers. Although, the implementation of quantum hardware execution in the Ket
quantum programming is future work. However, since the KQASM is more expressive than
some quantum assembly, quantum platforms that use those assemblies impose limitations to the
quantum execution, e.g., the IBM Q computers that use the OpenQASM [6] is unable to execute
while loops.

With the KBW implementation, we improve over the bitwise representation [7], allowing the
simulation of multiple qubits with a low amount of superposition or entanglement, demonstrating
that the exponential execution time of a quantum simulator is not dependent on the number of
qubits. We can see these results in the benchmarks, where KBW shows an exponential advantage
in some cases and an exponential scale similar to the other simulator in the worst case. This
implementation has a high potential for parallel execution, because the order of quantum gate ex-
ecution is irrelevant among qubits that are not entangled. However, making KBW multithreading
is future work.

The limitation for the batch execution of a cloud-based quantum computer is not valid for quan-
tum computer simulators. However, we implement KBW with the same classical and quantum
computers interaction restriction of Section 4. So, even though the final goal of Ket is real quantum
hardware programming, we can validate the proposed runtime architecture with the KBW
simulator.

The KQASM language takes advantage of the KBW ability to execute any one-qubit gate with
many qubits of control without the need for quantum gate decomposition. Also, when the con-
trolled gate does not entangle the control and target qubits, the simulation time increases linearly
compared with the execution of the non-controlled gate. As KBW simulation time is independent
of the number of qubits, QASM does not need to provide any information a priori on the total
number of qubits that KBW needs to simulate, since it can arbitrarily allocate and free qubits.

In the proposal of the runtime architecture and the implementation of the Ket Quantum Pro-
gramming, we do not rightly address the problem of debugging quantum programs, and there is a
lack of precision in the description of the quantum hardware execution. In future works, we also
want to address the problem of quantum debugging and answer the following questions: With
the inability to look into the superposition and the no-cloning theorem, how does one debug a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

12:24 E. C. R. da Rosa and R. de Santiago

quantum hardware execution? And, considering the exponential increase in information, how does
one efficiently debug a simulated quantum execution?

REFERENCES

[1] Héctor Abraham et al. 2019. Qiskit: An Open-source Framework for Quantum Computing. https://zenodo.org/record/

2562111/export/hx.

[2] Frank Arute et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779

(Oct. 2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5

[3] Jeff Barr. 2019. Amazon Braket—Get Started with Quantum Computing. AWS News Blog. https://aws.amazon.com/

blogs/aws/amazon-braket-get-started-with-quantum-computing/.

[4] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. 1993.

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70

(Mar. 1993), 1895–1899. Issue 13. https://doi.org/10.1103/PhysRevLett.70.1895

[5] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high-level quantum language

with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI’20). Association for Computing Machinery, New York, NY, 286–300.

https://doi.org/10.1145/3385412.3386007

[6] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open Quantum Assembly Language.

Retrieved from https://arXiv:1707.03429.

[7] Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani. 2020. QSystem: Bitwise Representation for Quantum Circuit

Simulations. Retrieved from https://arXiv:2004.03560.

[8] Cirq Developers. 2021. Cirq. https://doi.org/10.5281/zenodo.4750446 See full list of authors on Github. Retrieved from

https://github.com/quantumlib/Cirq/graphs/contributors.

[9] Simon J. Devitt, William J. Munro, and Kae Nemoto. 2013. Quantum error correction for beginners. Rep. Progr. Phys.

76, 7 (July 2013), 076001. https://doi.org/10.1088/0034-4885/76/7/076001

[10] P. A. M. Dirac. 1939. A new notation for quantum mechanics. Math. Proc. Cambridge Philos. Soc. 35, 3 (July 1939),

416–418. https://doi.org/10.1017/S0305004100021162

[11] Samuel S. Feitosa, Juliana K. Vizzotto, Eduardo K. Piveta, and Andre R. Du Bois. 2016. FJQuantum—A quantum object

oriented language. Electr. Notes Theoret. Comput. Sci. 324 (Sep. 2016), 67–77. https://doi.org/10.1016/j.entcs.2016.09.

007

[12] Richard P. Feynman. 1982. Simulating physics with computers. Int. J. Theoret. Phys. 21, 6–7 (June 1982), 467–488.

https://doi.org/10.1007/BF02650179

[13] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V.

Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels.

2019. eQASM: An executable quantum instruction set architecture. In Proceedings of the IEEE International Symposium

on High Performance Computer Architecture (HPCA’19). 224–237. https://doi.org/10.1109/HPCA.2019.00040

[14] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A

scalable quantum programming language. ACM SIGPLAN Notices 48, 6 (June 2013), 333–342. https://doi.org/10.1145/

2499370.2462177

[15] Lov K. Grover. 1997. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 2 (July

1997), 325–328. https://doi.org/10.1103/PhysRevLett.79.325

[16] Ji Guan, Mingsheng Ying, Runyao Duan, Li Zhou, Yang He, and Shusen Liu. 2017. Q |SI 〉: A quantum programming

environment. Sci. Sinica Inform. 47, 10 (Oct. 2017), 1300–1315. https://doi.org/10.1360/N112017-00095

[17] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl. 2016. Quantum circuits for

isometries. Phys. Rev. A 93, 3 (Mar. 2016), 032318. https://doi.org/10.1103/PhysRevA.93.032318

[18] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. 2020. Optimization of quantum circuit

mapping using gate transformation and commutation. Integration 70 (Jan. 2020), 43–50. https://doi.org/10.1016/j.vlsi.

2019.10.004

[19] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.

2014. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the

11th ACM Conference on Computing Frontiers (CF’14). ACM Press, New York, New York, 1–10. https://doi.org/10.

1145/2597917.2597939

[20] Tyson Jones, Anna Brown, Ian Bush, and Simon C. Benjamin. 2019. QuEST and high performance simulation of

quantum computers. Sci. Rep. 9, 1 (2019), 1–11.

[21] N. Khammassi, I. Ashraf, J. v. Someren, R. Nane, A. M. Krol, M. A. Rol, L. Lao, K. Bertels, and C. G. Almudever. 2020.

OpenQL : A Portable Quantum Programming Framework for Quantum Accelerators. Retrieved from https://arXiv:

2005.13283.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

https://zenodo.org/record/2562111/export/hx
https://doi.org/10.1038/s41586-019-1666-5
https://aws.amazon.com/blogs/aws/amazon-braket-get-started-with-quantum-computing/
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1145/3385412.3386007
https://arXiv:1707.03429
https://arXiv:2004.03560
https://doi.org/10.5281/zenodo.4750446
https://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1016/j.entcs.2016.09.007
https://doi.org/10.1007/BF02650179
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1360/N112017-00095
https://doi.org/10.1103/PhysRevA.93.032318
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/10.1145/2597917.2597939
https://arXiv:2005.13283

Ket Quantum Programming 12:25

[22] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, and K. Bertels. 2018. cQASM v1.0:

Towards a Common Quantum Assembly Language. Retrieved from https://arXiv:1805.09607.

[23] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook. 2019. Straw-

berry fields: A software platform for photonic quantum computing. Quantum 3 (Mar. 2019), 129. https://doi.org/10.

22331/q-2019-03-11-129

[24] Aleks Kissinger and John van de Wetering. 2020. PyZX: Large scale automated diagrammatic reasoning. Electr. Proc.

Theoret. Comput. Sci. 318 (May 2020), 229–241. https://doi.org/10.4204/EPTCS.318.14

[25] LLVM Project. 2021. LLVM Language Reference Manual—LLVM 10 documentation. https://llvm.org/docs/LangRef.

html.

[26] Hynek Mlnarik. 2007. Operational Semantics and Type Soundness of Quantum Programming Language LanQ. Re-

trieved from https://arXiv:0708.0890.

[27] Nader Khammassi. 2021. QE-Lab/qx-simulator: QX Simulator. Retrieved from https://github.com/QE-Lab/qx-

simulator.

[28] Michael A. Nielsen and Isaac L. Chuang. 2010. Introduction and overview. In Quantum Computation and Quantum

Information. Cambridge University Press, Cambridge, 1–59. https://doi.org/10.1017/CBO9780511976667.005

[29] Bernhard Ömer. 2005. Classical concepts in quantum programming. Int. J. Theoret. Phys. 44, 7 (July 2005), 943–955.

https://doi.org/10.1007/s10773-005-7071-x

[30] Adam Paetznick and Krysta M. Svore. 2014. Repeat-until-success: Non-deterministic decomposition of single-qubit

unitaries. Quantum Info. Comput. 14, 15–16 (Nov. 2014), 1277–1301.

[31] Scott Pakin. 2016. A quantum macro assembler. In Proceedings of the IEEE High Performance Extreme Computing

Conference (HPEC’16). 1–8. https://doi.org/10.1109/HPEC.2016.7761637

[32] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A core language for quantum circuits. ACM

SIGPLAN Notices 52, 1 (May 2017), 846–858. https://doi.org/10.1145/3093333.3009894

[33] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.

22331/q-2018-08-06-79

[34] Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-

puter. SIAM J. Comput. 26, 5 (Oct. 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

[35] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. 2018.

Qubit allocation. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’18). ACM

Press, New York, New York, 113–125. https://doi.org/10.1145/3179541.3168822

[36] Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2017. A Practical Quantum Instruction Set Architecture.

Retrieved from https://arXiv:1608.03355.

[37] Damian S. Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: An open source software framework for

quantum computing. Quantum 2 (Jan. 2018), 49. https://doi.org/10.22331/q-2018-01-31-49

[38] Daniel Strano, Benn Bollay, nlewycky, and Tomas Babej. 2020. vm6502q/qrack: Issue #357 Addressed. https://doi.org/

10.5281/zenodo.3842287

[39] Krysta Svore, Martin Roetteler, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim,

Vadym Kliuchnikov, Mariia Mykhailova, and Andres Paz. 2018. Q#: Enabling scalable quantum computing and de-

velopment with a high-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop (RWDSL’18).

ACM Press, New York, New York, 1–10. https://doi.org/10.1145/3183895.3183901

[40] Rodney Van Meter and Kohei M. Itoh. 2005. Fast quantum modular exponentiation. Phys. Rev. A 71, 5 (May 2005),

052320. https://doi.org/10.1103/PhysRevA.71.052320

[41] Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salomaa. 2004. Efficient decomposition of quantum gates. Phys.

Rev. Lett. 92, 17 (Apr. 2004), 177902. https://doi.org/10.1103/PhysRevLett.92.177902

[42] Dave Wecker and Krysta M. Svore. 2014. LIQUi|>: A Software Design Architecture and Domain-Specific Language

for Quantum Computing. Retrieved from https://arXiv:1402.4467.

[43] W. K. Wootters and W. H. Zurek. 1982. A single quantum cannot be cloned. Nature 299, 5886 (Oct. 1982), 802–803.

https://doi.org/10.1038/299802a0

Received November 2020; revised March 2021; accepted July 2021

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 12. Pub. date: October 2021.

https://arXiv:1805.09607
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.4204/EPTCS.318.14
https://llvm.org/docs/LangRef.html
https://arXiv:0708.0890
https://github.com/QE-Lab/qx-simulator
https://doi.org/10.1017/CBO9780511976667.005
https://doi.org/10.1007/s10773-005-7071-x
https://doi.org/10.1109/HPEC.2016.7761637
https://doi.org/10.1145/3093333.3009894
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/3179541.3168822
https://arXiv:1608.03355
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.5281/zenodo.3842287
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevLett.92.177902
https://arXiv:1402.4467
https://doi.org/10.1038/299802a0

